Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13380, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927563

RESUMO

Gastruloids are three-dimensional embryonic organoids that reproduce key features of early mammalian development in vitro with unique scalability, accessibility, and spatiotemporal similarity to real embryos. Recently, we adapted the gastruloid culture conditions to promote cardiovascular development. In this work, we extended these conditions to capture features of embryonic blood development through a combination of immunophenotyping, detailed transcriptomics analysis, and identification of blood stem/progenitor cell potency. We uncovered the emergence of blood progenitor and erythroid-like cell populations in late gastruloids and showed the multipotent clonogenic capacity of these cells, both in vitro and after transplantation into irradiated mice. We also identified the spatial localization near a vessel-like plexus in the anterior portion of gastruloids with similarities to the emergence of blood stem cells in the mouse embryo. These results highlight the potential and applicability of gastruloids to the in vitro study of complex processes in embryonic blood development with spatiotemporal fidelity.


Assuntos
Desenvolvimento Embrionário , Gástrula , Animais , Embrião de Mamíferos , Perfilação da Expressão Gênica , Mamíferos , Camundongos , Organoides
2.
APL Bioeng ; 6(3): 036101, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35818479

RESUMO

In many leukemia patients, a poor prognosis is attributed either to the development of chemotherapy resistance by leukemic stem cells (LSCs) or to the inefficient engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM). Here, we build a 3D in vitro model system of bone marrow organoids (BMOs) that recapitulate several structural and cellular components of native BM. These organoids are formed in a high-throughput manner from the aggregation of endothelial and mesenchymal cells within hydrogel microwells. Accordingly, the mesenchymal compartment shows partial maintenance of its self-renewal and multilineage potential, while endothelial cells self-organize into an interconnected vessel-like network. Intriguingly, such an endothelial compartment enhances the recruitment of HSPCs in a chemokine ligand/receptor-dependent manner, reminiscent of HSPC homing behavior in vivo. Additionally, we also model LSC migration and nesting in BMOs, thus highlighting the potential of this system as a well accessible and scalable preclinical model for candidate drug screening and patient-specific assays.

3.
Stem Cell Reports ; 15(3): 566-576, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857979

RESUMO

Fatty acid ß-oxidation (FAO), the breakdown of lipids, is a metabolic pathway used by various stem cells. FAO levels are generally high during quiescence and downregulated with proliferation. The endogenous metabolite malonyl-CoA modulates lipid metabolism as a reversible FAO inhibitor and as a substrate for de novo lipogenesis. Here we assessed whether malonyl-CoA can be exploited to steer the behavior of hematopoietic stem/progenitor cells (HSPCs), quiescent stem cells of clinical relevance. Treatment of mouse HSPCs in vitro with malonyl-CoA increases HSPC numbers compared with nontreated controls and ameliorates blood reconstitution capacity when transplanted in vivo, mainly through enhanced lymphoid reconstitution. Similarly, human HSPC numbers also increase upon malonyl-CoA treatment in vitro. These data corroborate that lipid metabolism can be targeted to direct cell fate and stem cell proliferation. Physiological modulation of metabolic pathways, rather than genetic or pharmacological inhibition, provides unique perspectives for stem cell manipulations in health and disease.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Metabolismo dos Lipídeos , Linfócitos/citologia , Metaboloma , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Células Cultivadas , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Linfócitos/metabolismo , Malonil Coenzima A/metabolismo , Metaboloma/genética , Camundongos Endogâmicos C57BL , Oxirredução
4.
Nat Commun ; 10(1): 2192, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097699

RESUMO

The transcription factor Yin Yang 1 (YY1) plays an important role in human disease. It is often overexpressed in cancers and mutations can lead to a congenital haploinsufficiency syndrome characterized by craniofacial dysmorphisms and neurological dysfunctions, consistent with a role in brain development. Here, we show that Yy1 controls murine cerebral cortex development in a stage-dependent manner. By regulating a wide range of metabolic pathways and protein translation, Yy1 maintains proliferation and survival of neural progenitor cells (NPCs) at early stages of brain development. Despite its constitutive expression, however, the dependence on Yy1 declines over the course of corticogenesis. This is associated with decreasing importance of processes controlled by Yy1 during development, as reflected by diminished protein synthesis rates at later developmental stages. Thus, our study unravels a novel role for Yy1 as a stage-dependent regulator of brain development and shows that biosynthetic demands of NPCs dynamically change throughout development.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Neurais/fisiologia , Fator de Transcrição YY1/fisiologia , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Técnicas de Inativação de Genes , Redes e Vias Metabólicas/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo
5.
Cell Stem Cell ; 24(3): 405-418.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849366

RESUMO

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Mitocôndrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida/metabolismo , Compostos de Piridínio
6.
Nat Commun ; 8(1): 221, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28790449

RESUMO

The in vitro expansion of long-term hematopoietic stem cells (HSCs) remains a substantial challenge, largely because of our limited understanding of the mechanisms that control HSC fate choices. Using single-cell multigene expression analysis and time-lapse microscopy, here we define gene expression signatures and cell cycle hallmarks of murine HSCs and the earliest multipotent progenitors (MPPs), and analyze systematically single HSC fate choices in culture. Our analysis revealed twelve differentially expressed genes marking the quiescent HSC state, including four genes encoding cell-cell interaction signals in the niche. Under basal culture conditions, most HSCs rapidly commit to become early MPPs. In contrast, when we present ligands of the identified niche components such as JamC or Esam within artificial niches, HSC cycling is reduced and long-term multipotency in vivo is maintained. Our approach to bioengineer artificial niches should be useful in other stem cell systems.Haematopoietic stem cell (HSC) self-renewal is not sufficiently understood to recapitulate in vitro. Here, the authors generate gene signature and cell cycle hallmarks of single murine HSCs, and use identified endothelial receptors Esam and JamC as substrates to enhance HSC growth in engineered niches.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Nicho de Células-Tronco , Animais , Bioengenharia , Moléculas de Adesão Celular/metabolismo , Ciclo Celular , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Receptores de Superfície Celular/metabolismo , Análise de Célula Única
7.
Nature ; 539(7630): 560-564, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27851739

RESUMO

Epithelial organoids recapitulate multiple aspects of real organs, making them promising models of organ development, function and disease. However, the full potential of organoids in research and therapy has remained unrealized, owing to the poorly defined animal-derived matrices in which they are grown. Here we used modular synthetic hydrogel networks to define the key extracellular matrix (ECM) parameters that govern intestinal stem cell (ISC) expansion and organoid formation, and show that separate stages of the process require different mechanical environments and ECM components. In particular, fibronectin-based adhesion was sufficient for ISC survival and proliferation. High matrix stiffness significantly enhanced ISC expansion through a yes-associated protein 1 (YAP)-dependent mechanism. ISC differentiation and organoid formation, on the other hand, required a soft matrix and laminin-based adhesion. We used these insights to build a fully defined culture system for the expansion of mouse and human ISCs. We also produced mechanically dynamic matrices that were initially optimal for ISC expansion and subsequently permissive to differentiation and intestinal organoid formation, thus creating well-defined alternatives to animal-derived matrices for the culture of mouse and human stem-cell-derived organoids. Our approach overcomes multiple limitations of current organoid cultures and greatly expands their applicability in basic and clinical research. The principles presented here can be extended to identify designer matrices that are optimal for long-term culture of other types of stem cells and organoids.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Intestinos/citologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Células-Tronco/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Adesão Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Forma Celular , Fibronectinas/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Camundongos , Proteólise , Nicho de Células-Tronco
8.
Nat Commun ; 7: 13125, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731316

RESUMO

Haematopoietic stem cells (HSCs) differ from their committed progeny by relying primarily on anaerobic glycolysis rather than mitochondrial oxidative phosphorylation for energy production. However, whether this change in the metabolic program is the cause or the consequence of the unique function of HSCs remains unknown. Here we show that enforced modulation of energy metabolism impacts HSC self-renewal. Lowering the mitochondrial activity of HSCs by chemically uncoupling the electron transport chain drives self-renewal under culture conditions that normally induce rapid differentiation. We demonstrate that this metabolic specification of HSC fate occurs through the reversible decrease of mitochondrial mass by autophagy. Our data thus reveal a causal relationship between mitochondrial metabolism and fate choice of HSCs and also provide a valuable tool to expand HSCs outside of their native bone marrow niches.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/classificação , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Desacopladores/farmacologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Glicólise/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ionóforos de Próton/farmacologia , Receptores de Superfície Celular/metabolismo , Nicho de Células-Tronco/genética , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...